I. Basics

- A. Structures
 - 1. What are structures?
 - 2. Primary and secondary structures
 - a) Primary structures
 - b) Secondary structures Brittle structures: fractures Ductile structures: flow
 - 3. Levels of structural analysis
 - a) Descriptive/Geometric
 - b) Kinematic
 - c) Dynamic
 - 4. Scales of structure
 - a) Microscopic
 - b) Mesoscopic / Outcrop scale
 - c) Macroscopic / Map scale
 - Topographic and geologic maps Map scales and representative fractions Topographic profiles and cross sections Vertical exaggeration
- B. Geometric/Descriptive analysis
 - 1. Orientation of lines and planes
 - a) Lines
 - Trend Plunge
 - Recording the data
 - b) Planes
 - Dip
 - Strike Dip direction
 - *Dip airection Recording the data*
 - c) Line in a plane Rake or pitch
 - Recording the data

2. Contour representations of lines and planes

- a) Topographic contours
- b) Structure contours
- c) Linear features on contour maps
- d) Contours and cross-sections
 - Apparent dip
 - Vertical exaggeration
- e) Time-structure contours

3. Stereographic representation of lines and planes

- a) Principles
 - Principle of stereographic (equal-angle) projection Wulff net
 - Primitive, great and small circles
- b) Basic plotting operations Plot of a line Plot of a plane and its pole
 - Plot of a line in a plane

c) Calculations

- Plane common to two lines Angle between two lines
- Line perpendicular to two lines
- Intersection of two planes
- Plane perpendicular to two planes
- Angle between two planes

C. Kinematic analysis

- 1. The basic movements
 - a) Translation
 - b) Rotation
 - c) Dilation
 - d) Distortion
 - Changes in length
 - Changes in angles
- 2. Strain
 - a) Heterogeneous strain and homogeneous strain
 - b) Strain ellipse
 - c) Strain ellipsoid
 - d) Strain axes

3. Deformation histories

- a) Rotational and non-rotational deformation
- b) Finite and infinitesimal deformation
- c) Coaxial and non-coaxial deformation
 - Pure strain
 - Simple shear

D. Dynamic analysis

- 1. Force and stress
 - Units of force
 - Units of stress
- 2. Stress on a plane
 - Normal stress

Shear stress

- 3. State of stress at a point
 - Hydrostatic and Lithostatic stress Non-hydrostatic and differential stress
 - Stress axes Effective stress

4. Stress-strain relationships

- Elastic
- Brittle
- Plastic
- Viscous
- Experimental vs. geological strain rates

II. Primary structures

A. Primary structures in sedimentary rocks

1. Stratification

- a) Map-scale units: formations, groups, members
- b) Outcrop-scale: bedding, lamination
- c) Thickness calculations
- 2. Structures generated by currents, way-up indicators
 - a) Bedforms and cross-stratification
 - b) Sole markings
- 3. Structures generated by soft-sediment deformation

B. Primary structures in igneous rocks

- 1. Intrusions
- 2. Volcanic rocks

C. Unconformities

- a) Disconformity
- b) Angular unconformity
- c) Nonconformity