X. Faults

- A. Introduction:
 - 1. Significance and importance of faults
 - 2. Faults, fault zones, shear zones
- B. Map-scale features
 - 1. Geometry
 - Strike, dip, footwall, hangingwall Curved faults - listric, ramp, flat Separation of layers
 - 2. Slip
- Separation vs. slip
- Net slip Dip slip
- Strike slip
- Oblique slip

3. Variation in slip along faults

Fault tip points and tip lines Rotational movement, scissor faults, and transfer zones Folds related to variation in slip

4. Effects of fault curvature

C. Outcrop features of faults

- 1. Slickenlines
 - Striations Mineral fibres
- 2. Fault rocks

Breccia, Cataclasite and Gouge Pseudotachylite Note on the term 'mylonite'

- 3. Deformation of the wall rocks
 - Riedel fractures

Folds associated with fault curvature Folds associated with variation in slip Folds associated with fault tips

D. Fault regimes

1. Anderson's classification

- a) Gravity regime
- b) Thrust regime
- c) Wrench regime

2. Rift zones and Normal faults

- a) Normal fault geometries
- b) Arrays of normal faults
- 3. Reverse faults, thrust and fold belts
 - a) Features of single thrust faults
 - b) Folds
 - Fault-bend folds
 - Detachment folds
 - Fault-propagation folds
 - c) Arrays of thrust faults

4. Strike-slip faults

- a) Features of strike-slip faults
- b) Transtensional zones
- c) Transpressional zones