## Basic measures of strain

Note: the following formulas are based on Ramsay, J.G., and Huber, M.I. (1983) The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London, but with sign convention modified for clockwise measurement of angles and shear strains

## Strain in one dimension

Extension (sometimes elongation) $e=\left(l-l_{0}\right) / l_{0}$ Stretch $S=l / l_{0}=1+e$
Quadratic elongation $\lambda=l^{2} / l_{0}{ }^{2}=(1+e)^{2}$
Natural strain $\varepsilon=\ln (S)=\ln (1+e)=\ln \left(l / l_{0}\right)$ where original length is $l_{0}$ and new length is $l$
Engineering shear strain $\gamma=\tan \psi$
Tensor shear strain $e_{s}=0.5 \tan \psi$
where angle of shear is $\psi$

## Strain in 2 dimensions

Principal strains are designated by subscripts 1 and
3, e.g. principal elongations are $e_{1}>e_{3}$ principal stretches are $S_{I}=X, S_{3}=Z$
Strain ratio $R_{s}=S_{1} / S_{3}$
Dilation $1+\Delta=S_{l} S_{3}$
Fundamental strain equations (Mohr circle)
For a line at an angle $\phi^{\prime}$ from the $S_{l}$ axis,
if $\lambda^{\prime}=1 / \lambda$ and $\gamma=\gamma / \lambda$ then
$\lambda^{\prime}=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}-\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \cos (2 \theta)$
and

$$
\gamma=\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \sin (2 \theta)
$$

If $\lambda^{\prime}$ is plotted against $\gamma$ these are the equations of a circle centred at $\lambda=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}$ with radius $\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2}$

## Shear zones

For a simple shear zone with angle of shear $\psi$, shear strain $\gamma$, the extension axis $\mathrm{S}_{1}$ is inclined to the shear zone boundary with angle $\theta$ given by:
$\gamma=\tan (\psi)=2 / \tan (2 \theta)$

## Reorientation of lines from strain ellipse

For a line with initial orientation $\alpha$ and orientation after deformation $\alpha^{\prime}$

$$
\tan (\alpha-\theta) / \tan \left(\alpha^{\prime}-\theta^{\prime}\right)=R_{s}
$$

where $R_{s}$ is the strain ratio, $\theta$ is initial clockwise angle of $S_{l}$ from x axis; $\theta^{\prime}$ is clockwise angle of $S_{l}$ from $x$ axis after deformation.

## Strain in 3 dimensions

Principal strains are designated by subscripts 1,2 and 3, e.g. principal elongations are $e_{1}>e_{2}>e_{3}$ Principal stretches are $S_{1}=X, S_{2}=Y, S_{3}=Z$
Dilation 1+ $\Delta=S_{l} S_{2} S_{3}$
Condition for plane strain: $S_{2}=1 ; S_{1} S_{3}=1$

## Basic measures of stress

## Stress Tensor

$\mathbf{T}=\left(\begin{array}{lll}\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\ \sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\ \sigma_{z x} & \sigma_{z y} & \sigma_{z z}\end{array}\right)$
where $\sigma_{x x}$ is normal stress on plane x and $\sigma_{\mathrm{xy}}$ is shear stress on plane x parallel to axis y

## Mean stress

If the principal stresses are $\sigma_{1} \sigma_{2} \sigma_{3}$ then:
$\sigma_{\mathrm{m}}=\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) / 3$

## Differential stress

$\sigma_{\mathrm{d}}=\sigma_{1}-\sigma_{3}$

## Deviatoric stress

$$
\mathbf{T}_{\mathbf{d}}=\left(\begin{array}{ccc}
\sigma_{x x}-\sigma_{m} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y}-\sigma_{m} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}-\sigma_{m}
\end{array}\right)
$$

## Stress on a plane

For a plane with unit normal vector vector $\mathbf{x}$, $\boldsymbol{\sigma}=\mathbf{T} . \mathbf{x}$
Resolved normal stress $\sigma_{\mathrm{n}}=\boldsymbol{\sigma} . \mathbf{x}$
If $\sigma$ is the magnitude of the stress on the plane, $\sigma_{\mathrm{n}}$ is the normal stress and $\sigma_{\mathrm{s}}$ is the shear stress, then:
$\sigma^{2}=\sigma_{\mathrm{n}}{ }^{2}+\sigma_{\mathrm{s}}{ }^{2}$

