Basic measures of strain

Note: the following formulas are based on Ramsay, J.G., and Huber, M.I. (1983) *The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London*, but with sign convention modified for clockwise measurement of angles and shear strains

Strain in one dimension

Extension (sometimes elongation) $e = (l-l_0)/l_0$ **Stretch** $S = l/l_0 = 1+e$ **Quadratic elongation** $\lambda = l^2/l_0^2 = (1+e)^2$ **Natural strain** $\varepsilon = ln(S) = ln(1+e) = ln(l/l_0)$ where original length is l_0 and new length is l **Engineering shear strain** $\gamma = tan \psi$ **Tensor shear strain** $e_s = 0.5 tan \psi$ where angle of shear is ψ

Strain in 2 dimensions

Principal strains are designated by subscripts 1 and

3, e.g. principal elongations are $e_1 > e_3$

principal stretches are $S_1=X$, $S_3=Z$

Strain ratio $R_s = S_1/S_3$

Dilation $1 + \Delta = S_1 S_3$

Fundamental strain equations (Mohr circle)

For a line at an angle ϕ' from the S_I axis,

if
$$\lambda' = 1/\lambda$$
 and $\gamma' = \gamma/\lambda$ then
 $\lambda' = \frac{\lambda'_3 + \lambda'_1}{2} - \frac{\lambda'_3 - \lambda'_1}{2}\cos(2\theta)$
and

 $\gamma' = \frac{\lambda_3' - \lambda_1'}{2} \sin(2\theta)$

If λ' is plotted against γ' these are the equations of a circle centred at $\lambda = \frac{\lambda'_3 + \lambda'_1}{2}$ with radius $\frac{\lambda'_3 - \lambda'_1}{2}$

Shear zones

For a simple shear zone with angle of shear ψ , shear strain γ , the extension axis S₁ is inclined to the shear zone boundary with angle θ given by:

 $\gamma = \tan(\psi) = 2 / \tan(2\theta)$

Reorientation of lines from strain ellipse

For a line with initial orientation α and orientation after deformation α'

 $tan(\alpha - \theta)/tan(\alpha' - \theta') = R_s$

where R_s is the strain ratio, θ is initial clockwise angle of S_1 from x axis; θ' is clockwise angle of S_1 from x axis after deformation.

Strain in 3 dimensions

Principal strains are designated by subscripts 1, 2 and 3, e.g. principal elongations are $e_1 > e_2 > e_3$ Principal stretches are $S_1=X$, $S_2=Y$, $S_3=Z$ **Dilation** $1+\Delta = S_1S_2S_3$ **Condition for plane strain**: $S_2=1$; $S_1S_3=1$

Basic measures of stress Stress Tensor

$$= \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$

where σ_{xx} is normal stress on plane x and σ_{xy} is shear stress on plane x parallel to axis y

<u>Mean stress</u>

Т

If the principal stresses are $\sigma_1 \sigma_2 \sigma_3$ then: $\sigma_m = (\sigma_1 + \sigma_2 + \sigma_3)/3$ <u>Differential stress</u> $\sigma_d = \sigma_1 - \sigma_3$ <u>Deviatoric stress</u> $T_d = \begin{pmatrix} \sigma_{xx} - \sigma_m & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} - \sigma_m & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} - \sigma_m \end{pmatrix}$

<u>Stress on a plane</u>

For a plane with unit normal vector vector \mathbf{x} , $\mathbf{\sigma} = \mathbf{T} \cdot \mathbf{x}$

Resolved normal stress $\sigma_n = \sigma . \mathbf{x}$

- If σ is the magnitude of the stress on the plane,
- σ_n is the normal stress and σ_s is the shear stress, then:

$$\sigma^2 = \sigma_n^2 + \sigma_s^2$$