Thrust belts

Shape of fault-bend fold (kink model):

Change in dip ϕ at ramp

$$\phi = \tan^{-1} \left[\frac{-\sin(b-\theta) [\sin(2b-\theta) - \sin\theta]}{\cos(b-\theta) [\sin(2b-\theta) - \sin\theta] - \sin\theta} \right]$$

where γ is half-interlimb angle of fold at the front of the structure, and θ is the ramp angle

Foreland basin subsidence

Shape of foreland basin:

z = downward deflection

x = horizontal distance z_{max} maximum downward deflection

$$z = z_{\max} e^{-x/\alpha} \cos\left(\frac{x}{\alpha}\right)$$

where α is a constant that depends on the flexural rigidity of the lithosphere *D* the density contrast $\Delta \rho$ and gravity *g*

$$\alpha = \sqrt[4]{\frac{4D}{\Delta\rho g}}$$

Shape of fault-propagation fold (kink model)

$$2\sec\theta - \cot\theta = \left[\frac{1 - 2\cos^2 q}{\sin 2q}\right]$$

where *q* is half-interlimb angle of fold at the crest of the structure, and θ is the ramp angle. Above tip of propagating fault, half interlimb angle leading edge of structure: $p = q + \theta/2$

Coulomb thrust wedges

For surface slope α and décollement slope β Internal strength of wedge k Internal fluid pressure ratio $\lambda_{\rm I}$ Décollement friction $\mu_{\rm b}$ Décollement fluid pressure ratio $\lambda_{\rm b}$ $\alpha = \frac{(1-\lambda_b)\mu_b - (1-\lambda_i)k\beta}{2}$

$$(1-\lambda_i)k+1$$