Plate kinematics

For calculations dealing with the whole Earth we use a coordinate system in which the origin is at the centre of the Earth. Axis 1 or x points towards the intersection of the equator and the Greenwich meridian, 2 or y is towards the intersection of the equator and $90^{\circ} \mathrm{E}$, and 3 or $\mathrm{z}=$ is towards the north pole. Longitudes east are positive angles, west are negative.

Paleomagnetism

Spreading half-rate related to age of magnetic anomaly $\quad v=w / t$
where $v=$ spreading half-rate, $w=$ distance from ridge, $t=$ age of anomaly.
Magnetic inclination related to latitude:

$$
\tan (I)=2 \tan (\lambda)
$$

where $I=$ inclination, $\lambda=$ latitude.

Euler poles for 12 major plates

in "no-net-rotation" reference frame. (Poles from the model NUVEL-1A by DeMets et al., Geophys. Res. Lett. Vol. 21 p. 2191-2194, 1994)

	Lat $\left({ }^{\circ}\right)$	Long $\left({ }^{\circ}\right)$	Rate $\left({ }^{\circ} / \mathrm{Myr}\right)$
	λ	ϕ	ω
Africa	50.57	-73.96	0.29091
Antarctica	62.99	244.24	0.23832
North America	-2.43	-85.90	0.20692
Pacific	-63.05	107.33	0.64086
Eurasia	50.62	247.73	0.23372
India/Australia	45.51	0.34	0.54535
Cocos	24.49	244.24	1.51028
Nazca	47.80	259.87	0.74318
Arabia	45.23	-4.46	0.54554
South America	-25.35	235.58	0.11643
Caribbean	25.01	266.99	0.21430
Juan da Fuca	-30.05	58.87	0.66583

Geographic coordinates converted to vector form
Components for Earth radius vector \mathbf{r} at latitude λ
longitude ϕ where $r=6370 \mathrm{~km}$
$r_{1}=r \cos (\lambda) \cos (\phi)$
$r_{2}=r \cos (\lambda) \sin (\phi)$
$r_{3}=r \sin (\lambda)$

Components for a unit north arrow $\hat{\mathbf{N}}$ at latitude λ longitude ϕ
$N_{1}=-\sin (\lambda) \cos (\phi)$
$N_{2}=-\sin (\lambda) \sin (\phi)$
$N_{3}=\cos (\lambda)$
Components for a unit east arrow $\hat{\mathbf{E}}$ at longitude ϕ
$E_{1}=-\sin (\phi)$
$E_{2}=\cos (\phi)$
$E_{3}=0$

Rate of plate motion at a point on boundary

In vector terms, slip vector for motion at any point on a plate boundary between plates A and B :

$$
{ }_{A} \mathbf{v}_{B}={ }_{A} \boldsymbol{\Omega}_{B} \times \mathbf{r}
$$

where: \mathbf{r} is the radius vector of the Earth at the point on the plate boundary and
${ }_{A} \Omega_{B}$ is the plate rotation vector
North component of ${ }_{A} \mathbf{v}_{\mathbf{B}}$ is given by $v_{N}={ }_{\mathrm{A}} \mathbf{V}_{\mathbf{B}} \cdot \hat{\mathbf{N}}$
East component of ${ }_{A} \mathbf{V}_{\mathbf{B}}$ is given by $v_{E}={ }_{\mathrm{A}} \mathbf{V}_{\mathbf{B}} \cdot \hat{\mathbf{E}}$
Alternatively, for a point at angular distance θ from the Euler pole

$$
v=\omega R \sin \theta
$$

where R is the radius of the Earth (6370 km), ω is the rate of rotation in radians per million years, and v is the rate of slip in km per million years (or mm per year)

Vector circuit for Euler poles

For any three plates A, B, C, if ${ }_{A} \boldsymbol{\Omega}_{B}$ signifies rotation of plate B relative to plate A then ${ }_{A} \boldsymbol{\Omega}_{B}+{ }_{B} \boldsymbol{\Omega}_{C}+{ }_{C} \boldsymbol{\Omega}_{A}=\mathbf{0}$ where ${ }_{A} \boldsymbol{\Omega}_{B}$ signifies motion of B relative to A

Vector circuit for triple junction

At a triple junction involving plates A, B, C, plate motion vectors obey ${ }_{A} \mathbf{v}_{B}+{ }_{B} \mathbf{v}_{C}+{ }_{C} \mathbf{v}_{A}=0$ where ${ }_{A} \mathbf{v}_{B}$ signifies motion of B relative to A
Note: sign conventions here follow the convention used by most geophysicists but not the text Earth Structure by Van der Pluijm \& Marshak (2004)

