Vectors and Orientation data

We use an east-north-up geographic coordinate system. Axis 1 or x points east, axis 2 or y points north, and axis 3 or z points up.
Note: some textbooks use an alternative north-east-down coordinate system.
In the following, the orientation of a line is specified by plunge and trend; a plane is specified by strike and dip, using the right-hand rule.

Planes and poles

Plunge (P) and trend (T) of pole from strike (S) and $\operatorname{dip}(\mathrm{D})$ of plane
$P=90-D \quad T=S-90^{\circ}$ or $S+270^{\circ}$
Strike (S) and dip (D) of plane from plunge (P) and trend (T) of pole
$\mathrm{D}=90-\mathrm{P} \quad \mathrm{S}=\mathrm{T}+90^{\circ}$ or $\mathrm{T}-270^{\circ}$

Direction cosines

Vector components of a unit vector $\left(\begin{array}{c}l \\ m \\ n\end{array}\right)$
l, m, n are known as direction cosines as each is the cosine of an angle between the unit vector and a coordinate axis
Direction cosines from plunge (P) and trend (T)

$$
\begin{aligned}
& l=\sin T \cos P \\
& m=\cos T \cos P \\
& n=-\sin P
\end{aligned}
$$

Plunge (P) and trend (T) from direction cosines

$$
\begin{aligned}
& T=\tan ^{-1}(l / m) \text { if } m \text { is positive or } \\
& T=\tan ^{-1}(l / m)+180 \text { if } m \text { is negative } \\
& P=-\sin ^{-1} n
\end{aligned}
$$

Plunge (P) and trend (T) from components of a general vector a

$$
\begin{aligned}
& T=\tan ^{-1}\left(a_{1} / a_{2}\right) \text { if } m \text { is positive or } \\
& T=\tan ^{-1}\left(a_{1} / a_{2}\right)+180 \text { if } m \text { is negative } \\
& P=-\sin ^{-1}\left(z / \sqrt{ }\left(a_{1}{ }^{2}+a_{2}^{2}+a_{3}^{2}\right)\right)
\end{aligned}
$$

Vector components of a pole to a plane from strike (S) and dip (D)
$l=-\cos S \sin D$
$m=\sin S \sin D$
$n=-\cos D$

Strike (S) and dip (D) from direction cosines of a pole

$$
\begin{aligned}
& T=\tan ^{-1}(l / m)+90 \text { if } m \text { is positive or } \\
& T=\tan ^{-1}(l / m)+270 \text { if } m \text { is negative } \\
& P=-\cos ^{-1} n
\end{aligned}
$$

Note: in Excel, the $\tan ^{-1}$ formulas can conveniently be expressed =DEGREES(ATAN2(M,L))

Statistics of orientation data

Statistics for a set of unit vectors: $\hat{\mathbf{a}}_{\mathbf{1}}, \hat{\mathbf{a}}_{\mathbf{2}}, \hat{\mathbf{a}}_{\mathbf{3}} \ldots \hat{\mathbf{a}}_{\mathbf{n}}$
Vector sum $\mathbf{R}=\left(\hat{\mathbf{a}}_{1}+\hat{\mathbf{a}}_{2}+\hat{\mathbf{a}}_{3}+\ldots \ldots . \hat{\mathbf{a}}_{\mathrm{n}}\right)$
Resultant $R=|\mathbf{R}|$
Vector mean $\mathbf{r}=\overline{\mathbf{R}}=\mathbf{R} / n$
Mean resultant $r=|\mathbf{r}|=R / n$
Direction cosine matrix of a set of unit vectors
The matrix $\left(\begin{array}{c}\sum l^{2} \sum l m \sum l n \\ \sum l m \sum m^{2} \sum m n \\ \sum l n \sum m n \sum n^{2}\end{array}\right)$
has eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{\mathbf{3}}$, and eigenvalues
$e_{1} \leq e_{2} \leq e_{3}$ Vectors and plate motion

