Vectors and Orientation data

We use an east-north-up geographic coordinate system. Axis 1 or x points east, axis 2 or y points north, and axis 3 or z points up.

- Note: some textbooks use an alternative north-east-down coordinate system.
- In the following, the orientation of a line is specified by plunge and trend; a plane is specified by strike and dip, using the right-hand rule.

Planes and poles

Plunge (P) and trend (T) of pole from strike (S) and dip (D) of plane

P = 90-D $T = S - 90^{\circ} \text{ or } S + 270^{\circ}$

Strike (S) and dip (D) of plane from plunge (P) and trend (T) of pole

D = 90-P $S = T + 90^{\circ} \text{ or } T - 270^{\circ}$

Direction cosines

Vector components of a unit vector $\begin{pmatrix} l \\ m \\ n \end{pmatrix}$

l,m,n are known as **direction cosines** as each is the cosine of an angle between the unit vector and a coordinate axis

Direction cosines from plunge (P) and trend (T)

$$l = \sin T \cos P$$

$$m = \cos T \cos P$$

$$n = -\sin P$$

Plunge (P) and trend (T) from direction cosines

 $T = tan^{-1}(l/m)$ if m is positive or $T = tan^{-1}(l/m) + 180$ if m is negative $P = -sin^{-1}n$

Plunge (P) and trend (T) from components of a general vector **a**

 $T = tan^{-1}(a_1/a_2) \text{ if } m \text{ is positive or}$ $T = tan^{-1}(a_1/a_2) + 180 \text{ if } m \text{ is negative}$ $P = -sin^{-1}(z/\sqrt{(a_1^2 + a_2^2 + a_3^2)})$

Vector components of a pole to a plane from strike (S) and dip (D)

 $l = -\cos S \sin D$ $m = \sin S \sin D$ $n = -\cos D$

Strike (S) and dip (D) from direction cosines of a pole

$$T = tan^{-1}(l/m) + 90$$
 if m is positive or
 $T = tan^{-1}(l/m) + 270$ if m is negative
 $P = -cos^{-1} n$

Note: in Excel, the *tan⁻¹* formulas can conveniently be expressed =DEGREES(ATAN2(M,L))

Statistics of orientation data

Statistics for a set of unit vectors: $\hat{a}_1, \hat{a}_2, \hat{a}_3 \dots \hat{a}_n$

Vector sum $\mathbf{R} = (\mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2 + \mathbf{\hat{a}}_3 + \dots \mathbf{\hat{a}}_n)$

Resultant $R = |\mathbf{R}|$

Vector mean $\mathbf{r} = \overline{\mathbf{R}} = \mathbf{R} / n$

Mean resultant $r = |\mathbf{r}| = R/n$

Direction cosine matrix of a set of unit vectors

The matrix
$$\begin{cases} \sum l^2 \sum lm \sum ln \\ \sum lm \sum m^2 \sum mn \\ \sum ln \sum mn \sum n^2 \end{cases}$$

has eigenvectors $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$, and eigenvalues $e_1 \le e_2 \le e_3$ Vectors and plate motion