Basic measures of strain

Strain in one dimension

Extension (sometimes elongation) $e = (l-l_0)/l_0$

Stretch $s = l/l_0 = 1 + e$

Quadratic elongation $\lambda = l^2/l_0^2 = (1+e)^2$

Natural strain $\varepsilon = ln(s) = ln(1+e) = ln(l/l_0)$

where original length is l_0 and new length is l

Engineering shear strain $\gamma = tan \psi$

Tensor shear strain $e_s = 0.5 \tan \psi$

where angle of shear is ψ

Strain in 2 dimensions*

Principal strains are designated by subscripts 1 and 3, e.g. principal elongations are $e_1 > e_3$ principal stretches are $s_1 = X$, $s_3 = Z$

Strain ratio $R_s = s_1/s_3$

Dilation $1+\Delta = s_1s_3$

Fundamental strain equations (Mohr circle)

For a line at an angle θ from the S_1 axis,

if $\lambda' = I/\lambda$ and $\gamma' = \gamma/\lambda$ then

$$\lambda' = \frac{\lambda_3' + \lambda_1'}{2} - \frac{\lambda_3' - \lambda_1'}{2} \cos(2\theta)$$

and

$$\gamma' = \frac{\lambda_3' - \lambda_1'}{2} \sin(2\theta)$$

If λ' is plotted against γ' these are the equations of a $\lambda' + \lambda'$

circle centred at $\lambda = \frac{\lambda_3' + \lambda_1'}{2}$, $\gamma = 0$

with radius $\frac{\lambda_3' - \lambda_1'}{2}$

Matrix F (deformation gradient tensor) describes relation between points in undeformed and deformed state

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

where (x_0,y_0) is original location and (x,y) is final location.

Alternatively $\mathbf{F}\mathbf{x_0} = \mathbf{x}$

Combining deformations: Matrix C for two

deformations B followed by A

C=AB

Dilation

 $1+\Delta = ad-bc$

Rotation of strain axes

Angle ω between deformed and undeformed states $\tan \omega = (b-c)/(a+d)$

Shear zones

For a simple shear zone with angle of shear ψ , shear strain γ , the extension axis S_1 is inclined to the shear zone boundary with angle θ given by:

 $\gamma = \tan(\psi) = 2 / \tan(2\theta)$

Reorientation of lines from strain ellipse

For a line with initial orientation α and orientation after deformation α'

$$tan(\alpha-\theta)/tan(\alpha'-\theta')=R_s$$

where R_s is the strain ratio, θ is initial clockwise angle of s_I from x axis; θ' is final clockwise angle of s_I from x axis.

Strain in 3 dimensions*

Principal strains are designated by subscripts 1, 2 and 3, e.g. principal elongations are $e_1 > e_2 > e_3$ Principal stretches are $s_1 = X$, $s_2 = Y$, $s_3 = Z$

Dilation $1+\Delta = s_1s_2s_3$

Condition for plane strain: $s_2=1$; $s_1s_3=1$ Strain ratios for Flinn plot

 $a = s_1/s_2$

 $b = s_2/s_3$

Shape parameter k = a/b

*Note: the formulas are based on Ramsay, J.G., and Huber, M.I. (1983) *The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London*, but with sign convention modified for clockwise measurement of angles and shear strains