Basic measures of strain

Strain in one dimension

Extension (sometimes elongation) $e=\left(l-l_{0}\right) / l_{0}$
Stretch $s=l / l_{0}=1+e$
Quadratic elongation $\lambda=l^{2} / l_{0}^{2}=(1+e)^{2}$
Natural strain $\varepsilon=\ln (s)=\ln (1+e)=\ln \left(l / l_{0}\right)$
where original length is l_{0} and new length is l
Engineering shear strain $\gamma=\tan \psi$
Tensor shear strain $e_{s}=0.5$ tan ψ
where angle of shear is ψ

Strain in 2 dimensions*

Principal strains are designated by subscripts 1 and
3, e.g. principal elongations are $e_{1}>e_{3}$
principal stretches are $s_{1}=X, s_{3}=Z$
Strain ratio $R_{s}=s_{1} / s_{3}$
Dilation 1+ $\Delta=s_{1} s_{3}$

Fundamental strain equations (Mohr circle)

For a line at an angle θ from the S_{l} axis,
if $\lambda^{\prime}=1 / \lambda$ and $\gamma=\gamma / \lambda$ then
$\lambda^{\prime}=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}-\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \cos (2 \theta)$
and

$$
\gamma^{\prime}=\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \sin (2 \theta)
$$

If λ^{\prime} is plotted against γ^{\prime} these are the equations of a circle centred at $\lambda=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}, \gamma=0$
with radius $\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2}$
Matrix F (deformation gradient tensor) describes relation between points in undeformed and deformed state
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{0}}{y_{0}}=\binom{x}{y}$
where $\left(x_{0}, y_{0}\right)$ is original location and (x, y) is final location.
Alternatively $\mathbf{F x}_{\mathbf{0}}=\mathbf{x}$
Combining deformations: Matrix C for two deformations B followed by A
$\mathbf{C}=\mathbf{A B}$

Dilation

$$
1+\Delta=a d-b c
$$

Rotation of strain axes

Angle ω between deformed and undeformed states $\tan \omega=(b-c) /(a+d)$

Shear zones

For a simple shear zone with angle of shear ψ, shear strain γ, the extension axis S_{1} is inclined to the shear zone boundary with angle θ given by:
$\gamma=\tan (\psi)=2 / \tan (2 \theta)$
Reorientation of lines from strain ellipse
For a line with initial orientation α and orientation after deformation α^{\prime}

$$
\tan (\alpha-\theta) / \tan \left(\alpha^{\prime}-\theta^{\prime}\right)=R_{s}
$$

where R_{s} is the strain ratio, θ is initial clockwise angle of s_{l} from x axis; θ^{\prime} is final clockwise angle of s_{l} from x axis.

Strain in 3 dimensions*

Principal strains are designated by subscripts 1,2 and 3, e.g. principal elongations are $e_{1}>e_{2}>e_{3}$ Principal stretches are $s_{1}=X, s_{2}=Y, s_{3}=Z$
Dilation 1+ $\Delta=s_{1} s_{2} s_{3}$
Condition for plane strain: $s_{2}=1 ; s_{1} s_{3}=1$ Strain ratios for Flinn plot
$a=s_{1} / s_{2}$
$b=s_{2} / s_{3}$
Shape parameter $k=a / b$
*Note: the formulas are based on Ramsay, J.G., and Huber, M.I. (1983) The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London, but with sign convention modified for clockwise measurement of angles and shear strains

