Basic measures of stress

Stress Tensor

$\mathbf{T}=\left(\begin{array}{lll}\sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right)$
where $\sigma_{I 2}$ is shear stress acting parallel to axis 2 on the plane perpendicular to axis 1
\mathbf{T} is symmetric (i.e. $\sigma_{x y}=\sigma_{y x}$)

Principal stresses

$\sigma_{1}>\sigma_{2}>\sigma_{3}$ are the normal stresses that operate parallel to the eigenvectors of \mathbf{T} (the stress axes). If the stress axes coincide with the coordinate axes then
$\mathbf{T}=\left(\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3}\end{array}\right)$

Mean stress

If the magnitudes of the principal stresses are $\sigma_{1} \sigma_{2}$ σ_{3} then:
mean stress $\sigma_{m}=\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) / 3$

Differential stress

Differential stress $\sigma_{d}=\sigma_{1}-\sigma_{3}$
Maximum shear stress $=\sigma_{d} / 2$

Deviatoric stress

$\mathbf{T}_{\mathbf{d}}=\left(\begin{array}{ccc}\sigma_{11}-\sigma_{m} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22}-\sigma_{m} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}-\sigma_{m}\end{array}\right)$

Stress on a plane

For a plane with unit normal vector vector \mathbf{x},

$$
\boldsymbol{\sigma}=\mathbf{T} \cdot \mathbf{x}
$$

Resolved normal stress $\sigma_{n}=\boldsymbol{\sigma} . \mathbf{x}$
Resolved shear stress $\sigma_{s}{ }^{2}=\sqrt{ }\left(\sigma^{2}-\sigma_{n}{ }^{2}\right)$
Where $\sigma, \sigma_{n}, \sigma_{s}$ are the magnitudes of the resolved shear stress, and its normal and shear components.

Effective stress

Effective stress $=\left(\begin{array}{ccc}\sigma_{11}-P_{f} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22}-P_{f} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}-P_{f}\end{array}\right)$
where $P_{f}=$ pore fluid pressure

