## Basic measures of strain

## Strain in one dimension

For original length $l_{0}$, new length $l$ angle of shear $\psi$
Extension (sometimes elongation) $e=\left(l-l_{0}\right) / l_{0}$
Stretch $s=l / l_{0}=1+e$
Quadratic elongation $\lambda=l^{2} / l_{0}^{2}=(1+e)^{2}$
Natural strain $\varepsilon=\ln (s)=\ln (1+e)=\ln \left(l / l_{0}\right)$
Engineering shear strain $\gamma=\tan \psi$
Tensor shear strain $e_{s}=0.5 \tan \psi$

## Strain in 2 dimensions*

Principal strains are designated by subscripts 1 and
3, e.g. principal elongations are $e_{1}>e_{3}$
principal stretches are $s_{1}=X, s_{3}=Z$
Strain ratio $R_{s}=s_{1} / s_{3}$
Dilation $1+\Delta=s_{1} s_{3}$
Fundamental strain equations (Mohr circle for strain)
For a line at an angle $\theta$ from the $s_{l}$ axis,
if $\lambda^{\prime}=1 / \lambda$ and $\gamma=\gamma / \lambda$ then

$$
\begin{aligned}
& \lambda^{\prime}=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}-\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \cos (2 \theta) \\
& \gamma^{\prime}=\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \sin (2 \theta)
\end{aligned}
$$

If $\lambda^{\prime}$ is plotted against $\gamma$ these are the equations of a circle centred at
$\lambda=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}, \gamma=0$ with radius $\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2}$

## Deformation gradient tensor $\mathbf{F}$

Describes relation between points in undeformed and deformed state $\mathbf{F x}_{\mathbf{0}}=\mathbf{x}$ or

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{0}}{y_{0}}=\binom{x}{y}
$$

where $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)$ is original location of a point and $\mathbf{x}=(x, y)$ is final location and $a b c d$ are components of $\mathbf{F}$.

## Reciprocal deformation gradient tensor $\mathbf{F}^{\mathbf{- 1}}$

$\mathbf{F}^{-1}=\frac{1}{a d-b c}\binom{d-b}{-c}=\left(\begin{array}{cc}d / a d-b c & -b / a d-b c \\ -c / a d-b c & a / a d-b c\end{array}\right)$
This 'undoes' the deformation: $\mathbf{F}^{-1} \mathbf{x}=\mathbf{x}_{\mathbf{0}}$

Combining deformations: Matrix $\mathbf{F}_{\mathbf{c}}$ for two deformations $\mathbf{F}_{\mathbf{a}}$ followed by $\mathbf{F}_{\mathbf{b}}$ $F_{c}=F_{b} F_{a}$
Displacement gradient tensor

$$
\mathbf{J}=(\mathbf{F}-\boldsymbol{\delta})=\left(\begin{array}{cc}
a-1 & b \\
c & d-1
\end{array}\right)
$$

describes relation of displacement to position points in undeformed state: $\mathbf{J x}_{\mathbf{0}}=\mathbf{x}-\mathbf{x}_{\mathbf{0}}$
Strain tensor

$$
\mathbf{E}=\left(\begin{array}{ll}
e_{x x} & e_{x z} \\
e_{z x} & e_{z z}
\end{array}\right)=\left(\begin{array}{cc}
a-1 & 0.5(b+c) \\
0.5(b+c) & d-1
\end{array}\right)
$$

describes the non-rotational part of $\mathbf{J}$

## Dilation

$$
1+\Delta=a d-b c=|\mathbf{F}|
$$

## Rotation of strain axes

Angle $\omega$ between deformed and undeformed states $\tan \omega=(b-c) /(a+d)$

## Reorientation of lines from strain ellipse

If $\theta=$ initial orientation of a line relative to $s_{l}$ and $\theta^{\prime}$ is orientation after deformation, then $\tan (\theta) / \tan \left(\theta^{\prime}\right)=R_{s}$ where $R_{s}$ is the strain ratio

## Simple shear zones

If $\gamma=$ shear strain, orientation $\theta$ of extension axis $s_{l}$ to shear-zone boundary is given by: $\tan (2 \theta)=2 / \gamma$

## Strain in 3 dimensions*

Principal strains are designated by subscripts 1,2
and 3, e.g. principal elongations are $e_{1}>e_{2}>e_{3}$
Principal stretches are $s_{1}=X, s_{2}=Y, s_{3}=Z$
Dilation 1+ $\Delta=s_{1} s_{2} s_{3}$
Condition for plane strain: $s_{2}=1 ; s_{1} s_{3}=1$ Strain ratios for Flinn plot
$a=s_{1} / s_{2}$
$b=s_{2} / s_{3}$
Shape parameter $k=a / b$

[^0]
[^0]:    *Note: the formulas are based on Ramsay, J.G., and Huber, M.I. (1983) The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London, but with sign convention modified for clockwise measurement of angles and shear strains

