Basic measures of strain

Strain in one dimension

For original length l_0 , new length l angle of shear ψ **Extension** (sometimes elongation) $e = (l-l_0)/l_0$ **Stretch** $s = l/l_0 = l+e$ **Quadratic elongation** $\lambda = l^2/l_0^2 = (l+e)^2$ **Natural strain** $\varepsilon = ln(s) = ln(l+e) = ln(l/l_0)$

Engineering shear strain $\gamma = tan \psi$ **Tensor shear strain** $e_s = 0.5 tan \psi$

Strain in 2 dimensions*

Principal strains are designated by subscripts 1 and 3, e.g. principal elongations are $e_1 > e_3$ principal stretches are $s_1=X$, $s_3=Z$

Strain ratio $R_s = s_1/s_3$

Dilation $1 + \Delta = s_1 s_3$

Fundamental strain equations (Mohr circle for strain)

For a line at an angle θ from the s_1 axis,

if
$$\lambda' = 1/\lambda$$
 and $\gamma' = \gamma/\lambda$ then

$$\lambda' = \frac{\lambda'_3 + \lambda'_1}{2} - \frac{\lambda'_3 - \lambda'_1}{2} \cos(2\theta)$$

$$\gamma' = \frac{\lambda'_3 - \lambda'_1}{2} \sin(2\theta)$$

If λ' is plotted against γ' these are the equations of a circle centred at

$$\lambda = \frac{\lambda'_3 + \lambda'_1}{2}, \gamma = 0$$
 with radius $\frac{\lambda'_3 - \lambda'_1}{2}$

Deformation gradient tensor F

Describes relation between points in undeformed and deformed state $Fx_0 = x$ or

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

where $\mathbf{x}_0 = (x_0, y_0)$ is original location of a point and $\mathbf{x} = (x, y)$ is final location and *a b c d* are components of **F**.

Reciprocal deformation gradient tensor F⁻¹

$$\mathbf{F}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d - b \\ -c & a \end{pmatrix} = \begin{pmatrix} d/ad - bc & -b/ad - bc \\ -c/ad - bc & ad - bc \end{pmatrix}$$

This 'undoes' the deformation: $F^{-1}x = x_0$

Combining deformations: Matrix **F**_c for two

deformations F_a followed by F_b

$$\mathbf{F}_{c} = \mathbf{F}_{b}\mathbf{F}_{a}$$

Displacement gradient tensor

$$\mathbf{J} = (\mathbf{F} - \mathbf{\delta}) = \begin{pmatrix} a - 1 & b \\ c & d - 1 \end{pmatrix}$$

describes relation of displacement to position points in undeformed state: $Jx_0 = x - x_0$

Strain tensor

$$\mathbf{E} = \begin{pmatrix} e_{xx} & e_{xz} \\ e_{zx} & e_{zz} \end{pmatrix} = \begin{pmatrix} a-1 & 0.5(b+c) \\ 0.5(b+c) & d-1 \end{pmatrix}$$

describes the non-rotational part of ${\bf J}$

Dilation

 $1 + \Delta = ad - bc = |\mathbf{F}|$

Rotation of strain axes

Angle ω between deformed and undeformed states

 $tan \omega = (b-c)/(a+d)$

Reorientation of lines from strain ellipse

If θ = initial orientation of a line relative to s_1 and θ' is orientation after deformation, then

 $tan(\theta)/tan(\theta')=R_s$ where R_s is the strain ratio

Simple shear zones

If γ =shear strain, orientation θ of extension axis s_1 to shear-zone boundary is given by: $\tan(2\theta) = 2/\gamma$

Strain in 3 dimensions*

Principal strains are designated by subscripts 1, 2 and 3, e.g. principal elongations are $e_1 > e_2 > e_3$ Principal stretches are $s_1=X$, $s_2=Y$, $s_3=Z$

Dilation $1 + \Delta = s_1 s_2 s_3$

Condition for plane strain: $s_2=1$; $s_1s_3=1$ **Strain ratios for Flinn plot**

$$a = s_1/s_2$$

 $b = s_2/s_3$
Shape parameter $k = a/b$

*Note: the formulas are based on Ramsay, J.G., and Huber, M.I. (1983) *The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London*, but with sign convention modified for clockwise measurement of angles and shear strains