Foreland fold and thrust belts

Kink models for fault-bend and fault-

propagation folds

Shape of fault-bend fold (kink model):

Change in dip ϕ at ramp

$$\phi = \tan^{-1} \left[\frac{-\sin(\gamma - \theta) \left[\sin(2\gamma - \theta) - \sin\theta \right]}{\cos(\gamma - \theta) \left[\sin(2\gamma - \theta) - \sin\theta \right] - \sin\gamma} \right]$$

where γ is the half-interlimb angle of fold at the

front of the structure, and θ is the ramp angle If we assume that $\theta = \varphi$ then

$$\varphi = \theta = \tan^{-1} \left(\frac{\sin 2\gamma}{2\cos^2 \gamma + 1} \right)$$
 graphed below.

Shape of fault-propagation fold (kink model):

 $2\sec\theta - \cot\theta = \left[\frac{1 - 2\cos^2\gamma}{\sin 2\gamma}\right]$

where γ is half-interlimb angle of fold at the crest of the structure, and θ is the ramp angle.

Half interlimb angle γ' at leading edge of structure above tip of propagating fault, $\gamma' = \gamma + \theta/2$

Foreland basin subsidence

Shape of foreland basin:

z = downward deflection

x = horizontal distance

 z_{max} maximum downward deflection

$$z = z_{\max} e^{-x/\alpha} \cos\left(\frac{x}{\alpha}\right)$$

where α is a constant that depends on the flexural rigidity of the lithosphere *D*, the density contrast $\Delta \rho$ and gravity *g*

$$\alpha = 4\sqrt{\frac{4D}{\Delta\rho g}}$$

Coulomb thrust wedges

For décollement slope β Internal strength of wedge k Internal fluid pressure ratio λ_I Décollement friction μ_b Décollement fluid pressure ratio λ_b Surface slope is α where

$$\alpha = \frac{(1-\lambda_b)\mu_b - (1-\lambda_i)k\beta}{(1-\lambda_i)k+1}$$

Or, critical taper

$$\alpha + \beta = \beta \frac{(1 - \lambda_b)\mu_b}{(1 - \lambda_i)(k - 1) + 1}$$