Foreland fold and thrust belts

Kink models for fault-bend and fault-

 propagation foldsShape of fault-bend fold (kink model):

Change in $\operatorname{dip} \phi$ at ramp

$$
\phi=\tan ^{-1}\left[\frac{-\sin (\gamma-\theta)[\sin (2 \gamma-\theta)-\sin \theta]}{\cos (\gamma-\theta)[\sin (2 \gamma-\theta)-\sin \theta]-\sin \gamma}\right]
$$

where γ is the half-interlimb angle of fold at the front of the structure, and θ is the ramp angle
If we assume that $\theta=\varphi$ then

$$
\varphi=\theta=\tan ^{-1}\left(\frac{\sin 2 \gamma}{2 \cos ^{2} \gamma+1}\right) \text { graphed below. }
$$

Shape of fault-propagation fold (kink model):
$2 \sec \theta-\cot \theta=\left[\frac{1-2 \cos ^{2} \gamma}{\sin 2 \gamma}\right]$
where γ is half-interlimb angle of fold at the crest of the structure, and θ is the ramp angle.
Half interlimb angle γ at leading edge of structure above tip of propagating fault, $\gamma=\gamma+\theta / 2$

Foreland basin subsidence

Shape of foreland basin:
$z=$ downward deflection
$x=$ horizontal distance
$z_{\text {max }}$ maximum downward deflection
$z=z_{\max } e^{-x / \alpha} \cos \left(\frac{x}{\alpha}\right)$
where α is a constant that depends on the flexural rigidity of the lithosphere D, the density contrast $\Delta \rho$ and gravity g
$\alpha=\sqrt[4]{\frac{4 D}{\Delta \rho g}}$

Coulomb thrust wedges

For décollement slope β
Internal strength of wedge k
Internal fluid pressure ratio λ_{I}
Décollement friction μ_{b}
Décollement fluid pressure ratio λ_{b}
Surface slope is α where
$\alpha=\frac{\left(1-\lambda_{b}\right) \mu_{b}-\left(1-\lambda_{i}\right) k \beta}{\left(1-\lambda_{i}\right) k+1}$
Or, critical taper
$\alpha+\beta=\beta \frac{\left(1-\lambda_{b}\right) \mu_{b}}{\left(1-\lambda_{i}\right)(k-1)+1}$

