Vector operations

Representation of vectors
In the following, vector \mathbf{a} is represented $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$
with components in directions east, north and up. In printed text, vectors are bold. In handwritten text, vectors are underlined or overscored with an arrow: a $\overrightarrow{\mathrm{a}}$
Magnitude of vector \mathbf{a} is

$$
a \text { or }|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Unit vector in same direction as a

$$
\hat{\mathbf{a}}=\left(\begin{array}{c}
a_{1} / a \\
a_{2} / a \\
a_{3} / a
\end{array}\right)
$$

Basic vector operations

Vector addition

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
a_{3}+b_{3}
\end{array}\right)
$$

Vector dot product

$$
\mathbf{a} \cdot \mathbf{b}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Vector dot product is a scalar $\mathbf{a} \cdot \mathbf{b}=a b \cos \theta$ where θ is the angle between \mathbf{a} and \mathbf{b}
Vector cross product

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-b_{2} a_{3} \\
a_{3} b_{1}-b_{3} a_{1} \\
a_{1} b_{2}-b_{1} a_{2}
\end{array}\right)
$$

Vector cross product is a vector with magnitude $a b \sin \theta$ where θ is the angle between \mathbf{a} and \mathbf{b}. $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}. Vectors \mathbf{a}, \mathbf{b} and $\mathbf{a} \times \mathbf{b}$ form a right-handed set.

Basic matrix algebra

Symmetric matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right) \text { or } a_{i j}=a_{j i}
$$

Skew symmetric matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
a & b & c \\
-b & d & e \\
-c & -e & f
\end{array}\right) \text { or } a_{i j}=-a_{j i}
$$

Transpose of a matrix

$$
\begin{aligned}
& \mathbf{A}^{\mathrm{T}}=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)^{T}=\left(\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right) \\
& \text { or } a^{T}{ }_{i j}=a_{j i}
\end{aligned}
$$

Matrix addition (shown for 2×2 matrix)

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right)
$$

or in general $a_{i j}+b_{i j}=c_{i j}$
Matrix multiplication (shown for 2×2 matrix)
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} b_{11}+a_{11} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right)$
or, in general $a_{i p} b_{p j}=c_{i j}$
The unit matrix or Kronecker's $\boldsymbol{\delta}$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { or }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { or } \delta_{i j} \text { or } \boldsymbol{\delta}
$$

Determinant of a 2×2 matrix

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Determinant of a 3×3 matrix

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

Eigenvectors of a matrix \mathbf{A} are solutions x to:

$$
\mathbf{A} \cdot \mathbf{x}=k \mathbf{x}
$$

where k is an eigenvalue associated with eigenvector \mathbf{x}. For a symmetric matrix \mathbf{A} the eigenvectors are mutually perpendicular.

