Plate kinematics

For calculations dealing with the whole Earth we use a coordinate system in which the origin is at the centre of the Earth. Axis 1 or x points towards the intersection of the equator and the Greenwich meridian, 2 or y is towards the intersection of the equator and $90^{\circ} \mathrm{E}$, and 3 or $\mathrm{z}=$ is towards the north pole. Longitudes east are positive angles, west are negative.

Geographic coordinates converted to vector form

Components for Earth radius vector \mathbf{r} at latitude λ
longitude ϕ where $r=6370 \mathrm{~km}$
$r_{1}=r \cos (\lambda) \cos (\phi)$
$r_{2}=r \cos (\lambda) \sin (\phi)$
$r_{3}=r \sin (\lambda)$
Components for a unit north arrow $\hat{\mathbf{N}}$ at latitude λ longitude ϕ
$N_{1}=-\sin (\lambda) \cos (\phi)$
$N_{2}=-\sin (\lambda) \sin (\phi)$
$N_{3}=\cos (\lambda)$
Components for a unit east arrow $\hat{\mathbf{E}}$ at longitude ϕ
$E_{1}=-\sin (\phi)$
$E_{2}=\cos (\phi)$
$E_{3}=0$

Paleomagnetism

Magnetic inclination related to latitude:

$$
\tan (I)=2 \tan (\lambda)
$$

where $I=$ inclination, $\lambda=$ latitude .
Spreading half-rate related to age of magnetic anomaly

$$
v=w /\left(t_{1}-t_{2}\right)
$$

where $v=$ spreading half-rate, $w=$ distance from ridge, $t_{1}, t_{2}=$ ages of anomalies.

Vector circuit for Euler poles

For any three plates A, B, C, if ${ }_{A} \boldsymbol{\Omega}_{B}$ signifies rotation of plate B relative to plate A then ${ }_{A} \boldsymbol{\Omega}_{B}+{ }_{B} \boldsymbol{\Omega}_{C}+{ }_{C} \boldsymbol{\Omega}_{A}=\mathbf{0}$ where ${ }_{A} \boldsymbol{\Omega}_{B}$ signifies motion of B relative to A

Vector circuit for triple junction

At a triple junction involving plates A, B, C, plate motion vectors obey ${ }_{A} \mathbf{v}_{B}+{ }_{B} \mathbf{v}_{C}+{ }_{C} \mathbf{v}_{A}=0$ where ${ }_{A} \mathbf{v}_{B}$ signifies motion of B relative to A

Euler poles for 24 plates

in "Pacific Plate" reference frame. (Poles from the model MORVEL; DeMets et al. 2010, Geophys.J.Int. 181, 1-80)

Plate		Rotation relative to Pacific Plate		
		Lat ${ }^{\circ} \mathrm{N}$	Long ${ }^{\text {E }}$	ω deg/Myr
Amur	AM	65.9	-82.7	0.929
Antarctica	AN	65.9	-78.5	0.887
Arabia	AR	60	-33.2	1.159
Australia	AU	60.1	6.3	1.079
Caribbean	CA	55.8	-77.5	0.905
Cocos	CO	42.2	-112.8	1.676
Capricorn	CP	62.3	-10.1	1.139
Eurasia	EU	61.3	-78.9	0.856
India	IN	61.4	-31.2	1.141
Juan de Fuca	JF	-0.6	37.8	0.625
Lwandle	LW	60	-66.9	0.932
MacQuarie	MQ	59.2	-8	1.686
North America	NA	48.9	-71.7	0.75
Nubia	NB	58.7	-66.6	0.935
Nazca	NZ	55.9	-87.8	1.311
Philippine Sea	PS	-4.6	-41.9	0.89
Rivera	RI	25.7	-104.8	4.966
South America	SA	56	-77	0.653
Scotia	SC	57.8	-78	0.755
Somalia	SM	59.3	-73.5	0.98
Sur	SR	55.7	-75.8	0.636
Sundaland	SU	59.8	-78	0.973
Sandwich	SW	-3.8	-42.4	1.444
Yangtze	YZ	65.5	-82.4	0.968

Rate of plate motion at a point on boundary
In vector terms, slip vector for motion at any point on a plate boundary between plates A and B :

$$
{ }_{A} \mathbf{v}_{B}={ }_{A} \boldsymbol{\Omega}_{B} \times \mathbf{r}
$$

where: \mathbf{r} is the radius vector of the Earth at the point on the plate boundary and ${ }_{A} \mathbf{\Omega}_{B}$ is the plate rotation vector
North component of ${ }_{A} \mathbf{v}_{\mathbf{B}}$ is given by $v_{N}={ }_{A} \mathbf{v}_{\mathbf{B}} \cdot \hat{\mathbf{N}}$ East component of ${ }_{A} \mathbf{V}_{\mathbf{B}}$ is given by $v_{E}={ }_{\mathrm{A}} \mathbf{V}_{\mathbf{B}} . \hat{\mathbf{E}}$
Alternatively, for a point at angular distance θ from the Euler pole
$\nu=\omega R \sin \theta$
where R is the radius of the Earth (6370 km), ω is the rate of rotation in radians per million years, and v is the rate of slip in km per million years (or mm per year)

Note: sign conventions here follow the convention used by most geophysicists but not the text Earth Structure by Van der Pluijm \& Marshak (2004)

