Basic measures of stress

Stress Tensor

$$\mathbf{T} = \left(\begin{array}{ccc} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{array} \right)$$

where σ_{12} is shear stress acting parallel to axis 2 on the plane perpendicular to axis 1

T is symmetric (i.e. $\sigma_{xy} = \sigma_{yx}$)

Principal stresses

 $\sigma_1 > \sigma_2 > \sigma_3$ are the normal stresses that operate parallel to the eigenvectors of **T** (the stress axes). If the stress axes coincide with the coordinate axes then

$$\mathbf{T} = \left(\begin{array}{ccc} \boldsymbol{\sigma}_1 & 0 & 0 \\ 0 & \boldsymbol{\sigma}_2 & 0 \\ 0 & 0 & \boldsymbol{\sigma}_3 \end{array} \right)$$

Mean stress

If the magnitudes of the principal stresses are $\sigma_1 \sigma_2 \sigma_3$ then:

mean stress $\sigma_m = (\sigma_1 + \sigma_2 + \sigma_3)/3$

Differential stress

Differential stress $\sigma_d = \sigma_1 - \sigma_3$

Maximum shear stress = $\sigma_d/2$

Deviatoric stress

$$\mathbf{T_d} = \begin{pmatrix} \boldsymbol{\sigma}_{11} - \boldsymbol{\sigma}_m & \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}_{13} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{22} - \boldsymbol{\sigma}_m & \boldsymbol{\sigma}_{23} \\ \boldsymbol{\sigma}_{31} & \boldsymbol{\sigma}_{32} & \boldsymbol{\sigma}_{33} - \boldsymbol{\sigma}_m \end{pmatrix}$$

Stress on a plane

For a plane with unit normal vector vector â,

$$\sigma = T.\hat{a}$$

Resolved normal stress $\sigma_n = \sigma \cdot \hat{\mathbf{a}}$

Resolved shear stress $\sigma_s^2 = \sqrt{(\sigma^2 - \sigma_n^2)}$

Where σ , σ_n , σ_s are the magnitudes of the resolved shear stress, and its normal and shear components.

Effective stress

Effective stress =
$$\begin{bmatrix} \sigma_{11} - P_f & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - P_f & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} - P_f \end{bmatrix}$$

where P_f = pore fluid pressure

Stress states

If ρ is the average density of overlying material, g is the acceleration due to gravity, and z is depth, and v is Poisson's ratio

Lithostatic/hydrostatic stress

$$\sigma_1 = \sigma_2 = \sigma_3 = \rho gz$$

Uniaxial-strain reference state

$$\sigma_x = \sigma_y = \frac{v}{1-v}\sigma_z = \frac{v}{1-v}\rho gz$$

Stress-strain relationships

(Elastic/brittle behaviour)

Elastic strain

Linear stress $\sigma_n = E.e$

Poisson's ratio $v = -e_1/e_3$

shear stress $\sigma_s = G. \gamma$

mean stress $\sigma_m = -K\Delta$

where E = Young's modulus of elasticity;

e = extension

 e_1 , e_3 are principal extensions of sample under uniaxial compression.

 γ = shear strain

G = shear modulus of elasticity

$$G = \frac{E}{2(1+v)};$$

K = bulk modulus of elasticity;

$$K = \frac{E}{3(1-2v)}$$

Brittle Failure

Coulomb fracture criterion

$$\sigma_s = C + \sigma_n \tanh$$

where C is a constant and ϕ is the angle of internal friction.

Angle between pole to failure plane and σ_I $\theta = 45^{\circ} + \phi/2$

"Byerlee's law" for movement on existing fractures

$$\sigma_s = 0.85 \sigma_n \ (\sigma_n < 200 \ \text{MPa})$$

$$\sigma_s = 50 \text{ MPa} + 0.60 \sigma_n (\sigma_n > 200 \text{ MPa})$$