Vector operations

Coordinate systems

For local structural observations, we use a geographic coordinate system. Axis x points east, axis y points north, and axis z points up. Note that other coordinate systems are possible.

For calculations dealing with the whole Earth we use a coordinate system in which the origin is at the centre of the Earth. Axis $x=$ points towards the intersection of the equator and the Greenwich meridian, y is towards the intersection of the equator and $90^{\circ} \mathrm{E}$, and $\mathrm{z}=$ is towards the north pole.

Representation of vectors

In the following, vector \mathbf{a} is represented $\left(\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right)$ with components in directions east, north and up.

In printed text, vectors are bold. In handwritten text, vectors are underlined thus \underline{a}

Magnitude of vector a is represented by
a or $|\mathbf{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$

Unit vector in same direction as a

Basic vector operations

Vector addition

$$
\left(\begin{array}{c}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right)+\left(\begin{array}{c}
b_{x} \\
b_{y} \\
b_{x}
\end{array}\right)=\left(\begin{array}{l}
a_{x}+b_{x} \\
a_{y}+b_{y} \\
a_{z}+b_{z}
\end{array}\right)
$$

Vector dot product $\mathbf{a . b}=a b \cos \theta$ where θ is the angle between \mathbf{a} and \mathbf{b}

$$
\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right)=a_{x} \cdot b_{x}+a_{y} \cdot b_{y}+a_{z} \cdot b_{z}
$$

Vector cross product

$$
\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \times\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right)=\left(\begin{array}{l}
a_{y} b_{z}-b_{y} a_{z} \\
a_{z} b_{x}-b_{z} a_{x} \\
a_{x} b_{y}-b_{x} a_{y}
\end{array}\right)
$$

Vectors and Orientation data

Planes and poles

Plunge (P) and trend (T) of pole from strike (S) and dip (D) of plane $P=90-D \quad T=S-90^{\circ}$ or $S+270^{\circ}$
Strike (S) and dip (D) of plane from plunge (P) and trend (T) of pole
$\mathrm{D}=90-\mathrm{P} \quad \mathrm{S}=\mathrm{T}+90^{\circ}$ or $\mathrm{T}-270^{\circ}$

Direction cosines

Vector components of a unit vector (direction
cosines) ($1, \mathrm{~m}, \mathrm{n}$) from plunge (P) and trend (T)

$$
\begin{aligned}
& l=\sin T \cos P \\
& m=\cos T \cos P \\
& n=-\sin P
\end{aligned}
$$

Plunge (P) and trend (T) from direction cosines ($1, \mathrm{~m}, \mathrm{n}$) (components of unit vector)

$$
\begin{aligned}
& T=\tan ^{-1}(l / m) \text { if } m \text { is positive or } \\
& T=\tan ^{-1}(l / m)+180 \text { if } m \text { is negative } \\
& P=-\sin ^{-1} n
\end{aligned}
$$

Plunge (P) and trend (T) from components of a general vector ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)

$$
\begin{aligned}
& T=\tan ^{-1}(x / y) \text { if } m \text { is positive or } \\
& T=\tan ^{-1}(x / y)+180 \text { if } m \text { is negative } \\
& P=-\sin ^{-1}\left(z / \sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)\right)
\end{aligned}
$$

Vector components of a pole to a plane (direction cosines) ($1, \mathrm{~m}, \mathrm{n}$) from strike (S) and dip (D)

$$
\begin{aligned}
& l=-\cos S \sin D \\
& m=\sin S \sin D \\
& n=-\cos D
\end{aligned}
$$

Strike (S) and dip (D) from direction cosines of a pole (1,m,n)

$$
\begin{aligned}
& T=\tan ^{-1}(l / m)+90 \text { if } m \text { is positive or } \\
& T=\tan ^{-1}(l / m)+270 \text { if } m \text { is negative } \\
& P=-\cos ^{-1} n
\end{aligned}
$$

Statistics of orientation data

Statistics for a set of unit vectors: $\hat{\mathbf{a}}_{\mathbf{1}}, \hat{\mathbf{a}}_{\mathbf{2}}, \hat{\mathbf{a}}_{\mathbf{3}} \ldots \hat{\mathbf{a}}_{\mathbf{n}}$ Vector sum $\mathbf{R}=\left(\hat{\mathbf{a}}_{1}+\hat{\mathbf{a}}_{2}+\hat{\mathbf{a}}_{3}+\ldots \ldots . \hat{\mathbf{a}}_{\mathrm{n}}\right)$
Resultant $R=|\mathbf{R}|$
Vector mean $\mathbf{r}=\overline{\mathbf{R}}=\mathbf{R} / n$
Mean resultant $r=|\mathbf{r}|=R / n$
Direction cosine matrix of a set of unit vectors
The matrix $\left(\begin{array}{ccc}\sum l^{2} & \sum l m & \sum l n \\ \sum l m & \sum m^{2} & \sum m n \\ \sum l n & \sum m n & \sum n^{2}\end{array}\right)$
has eigenvectors $\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{2}}, \mathbf{E}_{\mathbf{3}}$, and eigenvalues

$$
E_{1} \leq E_{2} \leq E_{3}
$$

