Vectors and plate motion

Geographic coordinates converted to vector form

Components for a radius vector **r** at latitude λ longitude ϕ where *R* is radius of the Earth

 $\mathbf{r}_{x} = Rcos(\lambda)cos(\phi)$ $\mathbf{r}_{y} = Rcos(\lambda)sin(\phi)$ $\mathbf{r}_{z} = Rsin(\lambda)$ Components for a unit North arrow $\hat{\mathbf{N}}$ at latitude λ longitude ϕ $\mathbf{N}_{x} = -sin(\lambda)cos(\phi)$ $\mathbf{N}_{y} = -sin(\lambda)sin(\phi)$ $\mathbf{N}_{z} = cos(\lambda)$ Components for a unit East arrow $\hat{\mathbf{E}}$ at longitude ϕ $\mathbf{E}_{x} = -sin(\phi)$ $\mathbf{E}_{y} = cos(\phi)$ $\mathbf{E}_{z} = 0$

Rate of plate motion at a point on boundary

For a point at angular distance $\boldsymbol{\theta}$ from the Euler pole

 $v = \omega Rsin\theta$

where R is the radius of the Earth (6370 km), ω is the rate of rotation in radians per million years, and v is the rate of slip in km per million years (or mm per year)

Alternatively, in vector terms, slip vector for motion $_{A}\mathbf{v}_{B} = {}_{A}\mathbf{\Omega}_{B} \times \mathbf{r}_{i}$

where \mathbf{r}_{i} is the radius vector of the earth at the point on the plate boundary and $_{A}\dot{\mathbf{U}}_{B}$ is the plate rotation vector

North component of $_{\mathbf{A}}\mathbf{v}_{\mathbf{B}}$ is given by $v_N = _{\mathbf{A}}\mathbf{v}_{\mathbf{B}} \cdot \hat{\mathbf{N}}$ East component of $_{\mathbf{A}}\mathbf{v}_{\mathbf{B}}$ is given by $v_E = _{\mathbf{A}}\mathbf{v}_{\mathbf{B}} \cdot \hat{\mathbf{E}}$

Vector circuit for Euler poles

For any three plates A, B, C, if ${}_{A}\Omega_{B}$ signifies rotation of plate B relative to plate A then ${}_{A}\Omega_{B} + {}_{B}\Omega_{C} + {}_{C}\Omega_{A} = 0$ where ${}_{A}\Omega_{B}$ signifies motion of A relative to B

Vector circuit for triple junction

At a triple junction involving plates A, B, C, plate motion vectors obey ${}_{A}\mathbf{v}_{B}+{}_{B}\mathbf{v}_{C}+{}_{C}\mathbf{v}_{A}=0$ where ${}_{A}\mathbf{v}_{B}$ signifies motion of A relative to B

Note: sign conventions here follow the text by Van der Pluijm & Marshak (2004)