Basic measures of strain

Note: the following formulas are based on Ramsay, J.G., and Huber, M.I. (1983) The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London, but with sign convention modified for clockwise measurement of angles and shear strains

Strain in one dimension

Extension (sometimes elongation) $e=\left(l-l_{0}\right) / l_{0}$
Stretch $S=l / l_{0}=1+e$
Quadratic elongation $\lambda=l^{2} / l_{0}^{2}=(1+e)^{2}$
Natural strain $\varepsilon=\ln (S)=\ln (1+e)=\ln \left(l / l_{0}\right)$
where original length is l_{0} and new length is l
Engineering shear strain $\gamma=\tan \psi$
Tensor shear strain $e_{s}=0.5 \tan \psi$
where angle of shear is ψ

Strain in 2 dimensions

Principal strains are designated by subscripts 1 and
3, e.g. principal elongations are $e_{1}>e_{3}$
principal stretches are $S_{I}=X, S_{3}=Z$
Strain ratio $R_{s}=S_{1} / S_{3}$
Dilation $1+\Delta=S_{l} S_{3}$
Fundamental strain equations (Mohr circle)
For a line at an angle θ from the S_{l} axis,
if $\lambda^{\prime}=1 / \lambda$ and $\gamma^{\prime}=\gamma / \lambda$ then
$\lambda^{\prime}=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}-\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \cos (2 \theta)$
and
$\gamma=\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2} \sin (2 \theta)$
If λ^{\prime} is plotted against γ^{\prime} these are the equations of a circle centred at $\lambda=\frac{\lambda_{3}^{\prime}+\lambda_{1}^{\prime}}{2}$ with radius $\frac{\lambda_{3}^{\prime}-\lambda_{1}^{\prime}}{2}$

Shear zones

For a simple shear zone with angle of shear ψ, shear strain γ, the extension axis S_{1} is inclined to the shear zone boundary with angle θ given by:
$\gamma=\tan (\psi)=2 / \tan (2 \theta)$

Reorientation of lines from strain ellipse

For a line with initial orientation α and orientation after deformation α^{\prime}
$\tan (\alpha-\theta) / \tan \left(\alpha^{\prime}-\theta^{\prime}\right)=R_{s}$
where R_{s} is the strain ratio, θ is initial clockwise angle of S_{l} from x axis; θ^{\prime} is clockwise angle of S_{l} from x axis after deformation.

Deformation matrix (deformation gradient tensor)
Matrix F describes relation between points in undeformed and deformed state

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{0}}{y_{0}}=\binom{x}{y}
$$

where $\left(x_{0}, y_{0}\right)$ is original location and (x, y) is final location.
Alternatively $\mathbf{F x}_{\mathbf{0}}=\mathbf{x}$
Reciprocal deformation matrix \mathbf{F}^{-1}

$$
\mathbf{F}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
d / a d-b c & -b / a d-b c \\
-c / a d-b c & a / a d-b c
\end{array}\right)
$$

This has the effect of 'undoing' the deformation:
$\mathrm{F}^{-1} \mathrm{x}=\mathrm{x}_{0}$
Combining deformations: Matrix C for two
deformations B followed by A
$\mathbf{C}=\mathrm{AB}$

Some deformation matrices

Matrix for pure dilation $\Delta\left(\begin{array}{cc}1+\Delta & 0 \\ 0 & 1+\Delta\end{array}\right)$
Matrix for clockwise rotation $\omega\left(\begin{array}{cc}\cos \omega & \sin \omega \\ -\sin \omega & \cos \omega\end{array}\right)$
Matrix for pure strain parallel to x and $\mathrm{y}\left(\begin{array}{cc}S_{x} & 0 \\ 0 & S_{z}\end{array}\right)$
Matrix for general pure strain $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$
Matrix for pure shear parallel to x and $\mathrm{y}\left(\begin{array}{ll}S & 0 \\ 0 & 1 / S\end{array}\right)$
Matrix for simple shear parallel to x -axis $\left(\begin{array}{ll}1 & \gamma \\ 0 & 1\end{array}\right)$

Displacement gradient tensor

$$
\mathbf{J}=(\mathbf{F}-\boldsymbol{\delta})=\left(\begin{array}{cc}
a-1 & b \\
c & d-1
\end{array}\right)
$$

describes relation between points in undeformed state and displacement:
$\mathrm{Jx}_{0}=\mathrm{x}-\mathrm{x}_{0}$
Strain tensor
$\mathbf{E}=\left(\begin{array}{ll}e_{x x} & e_{x z} \\ e_{z x} & e_{z z}\end{array}\right)=\left(\begin{array}{cc}a-1 & 0.5(b+c) \\ 0.5(b+c) & d-1\end{array}\right)$
describes the non-rotational part of displacement gradient.

