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Basic measures of strain 
Note: the following formulas are based on Ramsay, 

J.G., and Huber, M.I. (1983) The Techniques of 
Modern Structural Geology, Volume 1: Strain 
Analysis, Academic Press, London, but with 
sign convention modified for clockwise 
measurement of angles and shear strains 

 
Strain in one dimension 
Extension (sometimes elongation) e = (l-l0)/l0 
Stretch S = l/l0 = 1+e 
Quadratic elongation λ= l2/l0

2 = (1+e)2 
Natural strain ε = ln(S) = ln(1+e)= ln(l/l0) 
where original length is l0 and new length is l 
Engineering shear strain γ= tan ψ 
Tensor shear strain es = 0.5 tan ψ 
where angle of shear is ψ 
Strain in 2 dimensions 
Principal strains are designated by subscripts 1 and 

3, e.g. principal elongations are e1 > e3  
 principal stretches are  S1=X,  S3=Z 
Strain ratio Rs = S1/S3 
Dilation 1+Δ = S1S3 
Fundamental strain equations (Mohr circle)  
For a line at an angle θ from the S1 axis, 
if λ' = 1/λ  and γ' =γ/λ then 
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If λ' is plotted against γ' these are the equations of a 

circle centred at λ = 
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Shear zones 
For a simple shear zone with angle of shear ψ, shear 
strain γ, the extension axis S1 is inclined to the shear 
zone boundary with angle θ given by: 
γ =tan(ψ) = 2 / tan(2θ) 
 
Reorientation of lines from strain ellipse 
For a line with initial orientation α and orientation 

after deformation α'  
 tan(α−θ)/tan(α'−θ')=Rs 
where Rs is the strain ratio, θ is initial clockwise 

angle of S1 from x axis; θ' is clockwise angle of 
S1 from x axis after deformation. 

Deformation matrix (deformation gradient 
tensor) 

Matrix F describes relation between points in 
undeformed and deformed state 
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where (x0,y0) is original location and (x,y) is final 
location. 

Alternatively Fx0 = x 
Reciprocal deformation matrix F-1 
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This has the effect of 'undoing' the deformation: 
 F-1x = x0 
Combining deformations: Matrix C for two 

deformations B followed by A 
 C=AB 
 
Some deformation matrices 

Matrix for pure dilation Δ 
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Matrix for clockwise rotation ω 
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Matrix for pure strain parallel to x and y 
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Matrix for general pure strain
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Matrix for pure shear parallel to x and y 
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Matrix for simple shear parallel to x-axis 
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Displacement gradient tensor 

 J = (F - δ) = 
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describes relation between points in undeformed 
state and displacement: 

 Jx0 = x - x0 
Strain tensor 
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 describes the non-rotational part of 
displacement gradient. 

 


