Basic measures of strain

Note: the following formulas are based on Ramsay, J.G., and Huber, M.I. (1983) *The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London*, but with sign convention modified for clockwise measurement of angles and shear strains

Strain in one dimension

Extension (sometimes elongation) $e = (l-l_0)/l_0$ **Stretch** $S = l/l_0 = 1 + e$ **Quadratic elongation** $\lambda = l^2/l_0^2 = (1+e)^2$ **Natural strain** $\varepsilon = ln(S) = ln(1+e) = ln(l/l_0)$ where original length is l_0 and new length is l **Engineering shear strain** $\gamma = tan \psi$ **Tensor shear strain** $e_s = 0.5 tan \psi$ where angle of shear is ψ **Strain in 2 dimensions** Principal strains are designated by subscripts 1 and 3, e.g. principal elongations are $e_1 > e_3$

principal stretches are $S_1=X$, $S_3=Z$

Strain ratio $R_s = S_1/S_3$

Dilation $1 + \Delta = S_1 S_3$

Fundamental strain equations (Mohr circle)

For a line at an angle θ from the S_1 axis,

if $\lambda' = 1/\lambda$ and $\gamma' = \gamma/\lambda$ then $\lambda' = \frac{\lambda'_3 + \lambda'_1}{2} - \frac{\lambda'_3 - \lambda'_1}{2}\cos(2\theta)$ and

$$\gamma' = \frac{\lambda'_3 - \lambda'_1}{2}\sin(2\theta)$$

If λ' is plotted against γ' these are the equations of a aircle control at $\lambda = \lambda'_3 + \lambda'_1$ with radius $\lambda'_3 - \lambda'_1$

circle centred at
$$\lambda = \frac{\lambda_3 + \lambda_1}{2}$$
 with radius $\frac{\lambda_3 - \lambda_3}{2}$

Shear zones

For a simple shear zone with angle of shear ψ , shear strain γ , the extension axis S₁ is inclined to the shear zone boundary with angle θ given by: $\gamma = \tan(\psi) = 2 / \tan(2\theta)$

Reorientation of lines from strain ellipse

For a line with initial orientation α and orientation after deformation α' $tan(\alpha-\theta)/tan(\alpha'-\theta')=R_s$

where R_s is the strain ratio, θ is initial clockwise angle of S_1 from x axis; θ' is clockwise angle of S_1 from x axis after deformation.

Deformation matrix (deformation gradient tensor)

Matrix F describes relation between points in undeformed and deformed state $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ where (x_0, y_0) is original location and (x, y) is final location. Alternatively $\mathbf{Fx_0} = \mathbf{x}$ Reciprocal deformation matrix $\mathbf{F^{-1}}$ $\mathbf{F^{-1}} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d/ad - bc & -b/ad - bc \\ -c/ad - bc & a/ad - bc \end{pmatrix}$ This has the effect of 'undoing' the deformation: $\mathbf{F^{-1}x} = \mathbf{x_0}$

Combining deformations: Matrix C for two deformations B followed by A C=AB

Some deformation matrices

Matrix for **pure dilation** $\Delta \begin{pmatrix} 1+\Delta & 0\\ 0 & 1+\Delta \end{pmatrix}$ Matrix for clockwise **rotation** $\omega \begin{pmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{pmatrix}$ Matrix for **pure strain** parallel to x and y $\begin{pmatrix} S_x & 0\\ 0 & S_z \end{pmatrix}$ Matrix for general pure strain $\begin{pmatrix} a & b\\ b & d \end{pmatrix}$ Matrix for **pure shear** parallel to x and y $\begin{pmatrix} S & 0\\ 0 & \frac{1}{S} \end{pmatrix}$ Matrix for **simple shear** parallel to x-axis $\begin{pmatrix} 1 & \gamma\\ 0 & 1 \end{pmatrix}$

Displacement gradient tensor

$$\mathbf{J} = (\mathbf{F} - \mathbf{\delta}) = \begin{pmatrix} a - 1 & b \\ c & d - 1 \end{pmatrix}$$

describes relation between points in undeformed state and displacement:

$$\mathbf{J}\mathbf{x}_0 = \mathbf{x} - \mathbf{x}_0$$

$$\mathbf{E} = \begin{pmatrix} e_{xx} & e_{xz} \\ e_{zx} & e_{zz} \end{pmatrix} = \begin{pmatrix} a-1 & 0.5(b+c) \\ 0.5(b+c) & d-1 \end{pmatrix}$$

describes the non-rotational part of displacement gradient.