

Shape of fault-bend fold (kink model):

Change in dip øat ramp

$$\phi = \tan^{-1} \left[\frac{-\sin(b-\theta) [\sin(2b-\theta) - \sin\theta]}{\cos(b-\theta) [\sin(2b-\theta) - \sin\theta] - \sin\theta} \right]$$

where γ is half-interlimb angle of fold at the front of the structure, and θ is the ramp angle

D

Foreland basin subsidence

Shape of foreland basin: z = downward deflection x = horizontal distance z_{max} maximum downward deflection $z = z_{max} e^{-x/\alpha} \cos\left(\frac{x}{\alpha}\right)$

where
$$\alpha$$
 is a constant that depends on
the flexural rigidity of the lithosphere
the density contrast $\Delta \rho$ and gravity g

$$\alpha = \sqrt[4]{\frac{4D}{\Delta\rho g}}$$

Shape of fault-propagation fold (kink model)

$$2\sec\theta - \cot\theta = \left[\frac{1 - 2\cos^2 q}{\sin 2q}\right]$$

where *q* is half-interlimb angle of fold at the crest of the structure, and θ is the ramp angle. Above tip of propagating fault, half interlimb angle leading edge of structure: $p = q + \theta/2$

Coulomb thrust wedges

For surface slope α and décollement slope β Internal strength of wedge k Internal fluid pressure ratio λ_{I} Décollement friction μ_{b} Décollement fluid pressure ratio λ_{b} $\alpha = \frac{(1-\lambda_{b})\mu_{b} - (1-\lambda_{i})k\beta}{(1-\lambda_{i})k+1}$