Stress-strain relationships

Elastic strain

Linear stress $\sigma_n = E.e$ Poisson's ratio $v = -e_1/e_3$ shear stress $\sigma_s = G.\gamma$ mean stress $\sigma_m = -K\Delta$ where E = Young's modulus of elasticity; G = shear modulus of elasticity; K = bulk modulus of elasticity; e_1, e_3 are principal extensions of sample under uniaxial compression.

Relationships between the elastic moduli

$$G = \frac{E}{2(1+v)}$$
 $K = \frac{E}{3(1-2v)}$

Brittle Failure

Coulomb fracture criterion $\sigma_s = C + \sigma_n \tan \phi$ where C is a constant and ϕ is the angle of internal friction.

"Byerlee's law" for movement on existing fractures

 $\sigma_{s} = 0.85 \sigma_{n} (\sigma_{n} < 200 \text{ MPa})$ $\sigma_{s} = 50 + 0.60 \sigma_{n} (\sigma_{n} > 200 \text{ MPa})$

Viscous (Newtonian) flow

Strain rate $\dot{e} \propto \sigma_d$

where σ_d is differential stress. Alternatively: $\sigma_d = \eta \dot{e}$ where $\eta =$ viscosity.

Specific equation for diffusional creep $(E * \langle x \rangle)$

$$\dot{e} = A\sigma_d \exp\left(-\frac{E}{RT}\right) d^{-r}$$

where d is the grain size and r is 2 for grainboundary diffusion and 3 for volume diffusion

Plastic (Von Mises) Creep

 $\sigma_d = C$ (constant)

Power Law Creep

 $\dot{e} \propto \sigma_d^n$ where k and n are constants

or more specifically

$$\dot{e} = A\sigma_d^n \exp\left(-\frac{E*}{RT}\right)$$

where A and n are constants for the material, E* is the activation energy, R is the gas constant and T is the absolute temperature.

Exponential Creep

 $\dot{e} \propto \exp(\sigma_d)$ where k and n are constants or more specifically:

$$\dot{e} = A \exp(\sigma_d) \exp(-E * / RT)$$

where A is a constant for the material, E* is the activation energy, R is the gas constant and T is the absolute temperature

Strain in 3 dimensions

Principal strains are designated by subscripts 1, 2 and 3, e.g. principal elongations are $e_1 > e_2 > e_3$ Principal stretches are $S_1=X$, $S_2=Y$, $S_3=Z$

Dilation $1+\Delta = S_1S_2S_3$ **Condition for plane strain**: $S_2=1$; $S_1S_3=1$ **Strain ratios for Flinn plot** $a = S_1/S_2$

 $\begin{aligned} a &= S_1/S_2\\ b &= S_2/S_3 \end{aligned}$

Shape parameter k = a/b