Vectors and plate motion

Geographic coordinates converted to vector form

Components for a radius vector \mathbf{r} at latitude λ longitude ϕ where R is radius of the Earth
$\mathbf{r}_{\mathrm{x}}=R \cos (\lambda) \cos (\phi)$
$\mathbf{r}_{\mathbf{y}}=R \cos (\lambda) \sin (\phi)$
$\mathbf{r}_{\mathrm{z}}=R \sin (\lambda)$
Components for a unit North arrow $\hat{\mathbf{N}}$ at latitude λ longitude ϕ
$\mathbf{N}_{\mathrm{x}}=-\sin (\lambda) \cos (\phi)$
$\mathbf{N}_{\mathrm{y}}=-\sin (\lambda) \sin (\phi)$
$\mathbf{N}_{\mathrm{z}}=\cos (\lambda)$
Components for a unit East arrow $\hat{\mathbf{E}}$ at longitude ϕ
$\mathbf{E}_{\mathrm{x}}=-\sin (\phi)$
$\mathbf{E}_{\mathrm{y}}=\cos (\phi)$
$\mathbf{E}_{\mathrm{z}}=0$

Rate of plate motion at a point on boundary

For a point at angular distance θ from the Euler pole
$v=\omega R \sin \theta$
where R is the radius of the Earth (6370 km), ω is the rate of rotation in radians per million years, and v is the rate of slip in km per million years (or mm per year)
Alternatively, in vector terms, slip vector for motion ${ }_{A} \mathbf{v}_{B}={ }_{A} \boldsymbol{\Omega}_{B} \times \mathbf{r}_{\mathbf{i}}$
where $\mathbf{r}_{\mathbf{i}}$ is the radius vector of the earth at the point on the plate boundary and ${ }_{A} \dot{\mathbf{U}}_{B}$ is the plate rotation vector
North component of ${ }_{\mathrm{A}} \mathbf{v}_{\mathbf{B}}$ is given by $v_{N}={ }_{\mathrm{A}} \mathbf{v}_{\mathbf{B}} \cdot \hat{\mathbf{N}}$
East component of ${ }_{A} \mathbf{v}_{\mathbf{B}}$ is given by $v_{E}={ }_{\mathrm{A}} \mathbf{V}_{\mathbf{B}} \cdot \hat{\mathbf{E}}$

Vector circuit for Euler poles

For any three plates A, B, C, if ${ }_{A} \boldsymbol{\Omega}_{B}$ signifies rotation of plate B relative to plate A then ${ }_{A} \boldsymbol{\Omega}_{B}{ }_{B}{ }_{B} \boldsymbol{\Omega}_{C}+{ }_{C} \boldsymbol{\Omega}{ }_{A}=\mathbf{0}$ where ${ }_{A} \boldsymbol{\Omega}_{B}$ signifies motion of A relative to B

Vector circuit for triple junction

At a triple junction involving plates A, B, C, plate motion vectors obey ${ }_{A} \mathbf{v}_{B}+{ }_{B} \mathbf{v}_{C}+{ }_{C} \mathbf{v}_{A}=0 \quad$ where ${ }_{A} \mathbf{v}_{B}$ signifies motion of A relative to B

