Basic measures of stress Stress Tensor

$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \end{bmatrix}$

$$\sigma_{yx} \sigma_{yy} \sigma_{yz} \sigma_{zz} \sigma_{zy} \sigma_{zz} \sigma_{zz}$$

where σ_{xx} is normal stress on plane x and σ_{xy} is shear stress on plane x parallel to axis y **T** is symmetric (i.e. $\sigma_{xv} = \sigma_{vx}$)

Principal stresses

 $\sigma_1 > \sigma_2 > \sigma_3$ are the normal stresses that operate parallel to the eigenvectors of T (the stress axes).

Mean stress

If the magnitudes of the principal stresses are $\sigma_1 \sigma_2$ σ_3 then:

 $\sigma_m = (\sigma_1 + \sigma_2 + \sigma_3)/3$

Differential stress

 $\sigma_d = \sigma_1 - \sigma_3$ Maximum shear stress = $\sigma_d/2$ **Deviatoric stress**

$$\overline{\mathbf{T}_{\mathbf{d}}} = \begin{pmatrix} \sigma_{xx} - \sigma_{m} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} - \sigma_{m} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} - \sigma_{m} \end{pmatrix}$$

Stress on a plane

For a plane with unit normal vector vector **x**, $\sigma = T.x$

Resolved normal stress $\sigma_n = \sigma \mathbf{x}$

If σ is the magnitude of the stress on the plane,

 σ_n is the magnitude of the normal stress and σ_s is the magnitude of the shear stress, then: $\sigma^2 = \sigma_n^2 + \sigma_s^2$

Basic measures of strain

Strain in one dimension

Extension (sometimes elongation) $e = (l - l_0)/l_0$ **Stretch** $S = l/l_0 = 1 + e$ Quadratic elongation $\lambda = l^2/l_0^2 = (1+e)^2$ Natural strain $\overline{\varepsilon} = ln(S) = ln(1+e) = ln(l/l_0)$ where original length is l_0 and new length is lEngineering shear strain $\gamma = tan \psi$ **Tensor shear strain** $e_s = 0.5 \tan \psi$ where angle of shear is ψ

Strain in 2 dimensions*

Principal strains are designated by subscripts 1 and 3, e.g. principal elongations are $e_1 > e_3$ principal stretches are $S_1 = X$, $S_3 = Z$

Strain ratio $R_s = S_1/S_3$

Dilation $1 + \Delta = S_1 S_3$

Fundamental strain equations (Mohr circle)

For a line at an angle θ from the S_1 axis,

if
$$\lambda' = 1/\lambda$$
 and $\gamma' = \gamma/\lambda$ then
 $\lambda' = \frac{\lambda'_3 + \lambda'_1}{2} - \frac{\lambda'_3 - \lambda'_1}{2}\cos(2\theta)$

and

$$\gamma' = \frac{\lambda'_3 - \lambda'_1}{2}\sin(2\theta)$$

If λ' is plotted against γ' these are the equations of a circle centred at $\lambda = \frac{\lambda'_3 + \lambda'_1}{2}$ with radius $\frac{\lambda'_3 - \lambda'_1}{2}$

Shear zones

For a simple shear zone with angle of shear ψ , shear strain γ , the extension axis S₁ is inclined to the shear zone boundary with angle θ given by: $\gamma = \tan(\psi) = 2 / \tan(2\theta)$

Reorientation of lines from strain ellipse

For a line with initial orientation α and orientation after deformation α'

 $tan(\alpha - \theta)/tan(\alpha' - \theta') = R_s$

where R_s is the strain ratio, θ is initial clockwise angle of S_1 from x axis; θ' is clockwise angle of S_1 from x axis after deformation.

Strain in 3 dimensions*

Principal strains are designated by subscripts 1, 2 and 3, e.g. principal elongations are $e_1 > e_2 > e_3$ Principal stretches are $S_1=X$, $S_2=Y$, $S_3=Z$ **Dilation** $1 + \Delta = S_1 S_2 S_3$ **Condition for plane strain**: $S_2=1$; $S_1S_3=1$ Strain ratios for Flinn plot $a = S_1 / S_2$ $b = S_2/S_3$ Shape parameter k = a/b

*Note: the formulas are based on Ramsay, J.G., and Huber, M.I. (1983) The Techniques of Modern Structural Geology, Volume 1: Strain Analysis, Academic Press, London, but with sign convention modified for clockwise measurement of angles and shear strains