

Orogens and crustal shortening Kink models for fault-bend and fault-propagation folds

Foreland basin subsidence

Shape of foreland basin:

z = downward deflection x = horizontal distance

 z_{max} maximum downward deflection

$$z = z_{\max} e^{-x/\alpha} \cos\left(\frac{x}{\alpha}\right)$$

where α is a constant that depends on the flexural rigidity of the lithosphere *D*, the density contrast

 $\Delta \rho$ and gravity *g*

$$\alpha = 4 \sqrt{\frac{4D}{\Delta \rho g}}$$

Wavelength of buckle folds

- For a viscous layer (thickness d, viscosity μ_1) immersed in a less viscous medium (viscosity
 - μ_2), the initial wavelength of buckle folds is

given by

$$W = 2\pi d_3 \sqrt{\frac{\mu_1}{6\mu_2}}$$

Shape of fault-bend fold (kink model):

Change in dip ϕ at ramp

$$\phi = \tan^{-1} \left[\frac{-\sin(b-\theta) [\sin(2b-\theta) - \sin\theta]}{\cos(b-\theta) [\sin(2b-\theta) - \sin\theta] - \sin\theta} \right]$$

where *b* is the half-interlimb angle of fold at the front of the structure, and θ is the ramp angle

Shape of fault-propagation fold (kink model)

$$2\sec\theta - \cot\theta = \left[\frac{1 - 2\cos^2 q}{\sin 2q}\right]$$

where q is half-interlimb angle of fold at the crest of the structure, and θ is the ramp angle.

Half interlimb angle *p* at leading edge of structure above tip of propagating fault, $p = q + \theta/2$

Coulomb thrust wedges

For décollement slope β Internal strength of wedge k Internal fluid pressure ratio λ_{I} Décollement friction μ_{b} Décollement fluid pressure ratio λ_{b} Surface slope is α where $\alpha = \frac{(1 - \lambda_{b})\mu_{b} - (1 - \lambda_{i})k\beta}{(1 - \lambda_{i})k + 1}$

Metamorphic belts

Steady-state Geotherm Equation

$$A = \frac{-Az^2}{2k} + \left(\frac{Q^*}{k} + \frac{(AxD)}{k}\right)z$$

where

D

T = Temperature (K)

- z = depth
- A = radioactive heat production

 Q^* = mantle heat flux

k = thermal conductivity