Vectors and plate motion

Geographic coordinates converted to vector form

Components for a radius vector \mathbf{r} at latitude λ longitude ϕ where R is radius of the Earth

 $\mathbf{r}_{x} = R\cos(\lambda)\cos(\phi)$

 $\mathbf{r}_{v} = R\cos(\lambda)\sin(\phi)$

 $\mathbf{r}_z = Rsin(\lambda)$

Components for a unit North arrow $\hat{\mathbf{N}}$ at latitude λ longitude ϕ

 $N_x = -sin(\lambda)cos(\phi)$

 $\mathbf{N}_{v} = -\sin(\lambda)\sin(\phi)$

 $N_z = cos(\lambda)$

Components for a unit East arrow $\hat{\mathbf{E}}$ at longitude ϕ

 $\mathbf{E}_{\mathbf{x}} = -\sin(\phi)$

 $\mathbf{E}_{v} = cos(\phi)$

 $\mathbf{E}_{\mathbf{z}} = \mathbf{0}$

Rate of plate motion at a point on boundary

For a point at angular distance θ from the Euler pole

 $v = \omega R \sin \theta$

where R is the radius of the Earth (6370 km), ω is the rate of rotation in radians per million years, and v is the rate of slip in km per million years (or mm per year)

Alternatively, in vector terms, slip vector for motion ${}_{A}\mathbf{v}_{B} = {}_{A}\mathbf{\Omega}_{B} \times \mathbf{r}_{i}$

where $\mathbf{r_i}$ is the radius vector of the earth at the point on the plate boundary and $_A\grave{\mathbf{U}}_B$ is the plate rotation vector

North component of $_{A}\mathbf{v}_{\mathbf{B}}$ is given by $v_{N} = _{A}\mathbf{v}_{\mathbf{B}} \cdot \hat{\mathbf{N}}$

East component of $_{\mathbf{A}}\mathbf{v}_{\mathbf{B}}$ is given by $v_E = _{\mathbf{A}}\mathbf{v}_{\mathbf{B}}$. $\hat{\mathbf{E}}$

Vector circuit for Euler poles

For any three plates A, B, C, if $_{A}\Omega_{B}$ signifies rotation of plate B relative to plate A then $_{A}\Omega_{B}+_{B}\Omega_{C}+_{C}\Omega_{A}=0$ where $_{A}\Omega_{B}$ signifies motion of A relative to B

Vector circuit for triple junction

At a triple junction involving plates A, B, C, plate motion vectors obey ${}_{A}\mathbf{v}_{B} + {}_{B}\mathbf{v}_{C} + {}_{C}\mathbf{v}_{A} = 0$ where ${}_{A}\mathbf{v}_{B}$ signifies motion of A relative to B

Note: sign conventions here follow the text by Van der Pluijm & Marshak (2004)