Elements of Basin Analysis

Basin Analysis

Basin analysis is a process that requires the integration of various methods and data sets with the purpose of understanding the origin and evolution of sedimentary basins

Data sets

- Outcrop data
- Core data
- Well-log data
- Seismic data

Sedimentary basins

Large areas of positive accommodation in which sediments can accumulate to considerable thickness over geological time scales

Basin classification – plate tectonics

- 1. Type of crust on which the basin rests
- 2. The position of the basin relative to plate margins
- 3. Where the basin lies close to a plate margin, the type of plate interaction occurring during sedimentation

Types of plate margins:

- 1. Convergent (subduction)
- 2. Divergent (rifts, mid-oceanic ridges)
- 3. Transform (offset mid-oceanic ridges)

Basin classification

- I. Intraplate basins (pre-rift)
- II. Divergent-margin basins (syn-rift)
- III. Intraplate basins (post-rift)
- IV. Convergent-margin basins
- V. Collision and post-collision basins
- VI. Strike-slip basins

Basin classification (modified from Einsele, 1992 and Miall, 2000)						
Basin type	Underlying crust	Tectonics	Features			
I. Intraplate basins (pre-rif	t)					
Intracratonic basins (interior sag basins)	continental	divergence	large areas, slow subsidence			
Graben structures (interior fracture basins)	continental	divergence	relatively narrow, fault-bounded, rapid subsidence			
II. Divergent-margin basin	s (syn-rift)					
3. Rift basins III. Intraplate basins (post-	transitional/oceanic	divergence	relatively narrow, fault-bounded early rapid subsidence			
			m 80 000 000 000 000 000 000 000 000 000			
 Divergent continental margins 	transitional	divergence	asymmetric, moderate to low subsidence			
5. Oceanic sag basins	oceanic	divergence	large, asymmetric, slow subsidence			

5. Subduction zones (trenches)	oceanic	convergence	asymmetric, varying depth and subsidence
7. Forearc, interarc, intra-arc backarc basins	transitional/oceanic	divergence	± symmetric, varying depth and subsidence
8. Retroarc foreland systems (overriding plate)	continental	flexural	asymmetric, varying depth and subsidence
Proarc foreland systems (underriding plate)	oceanic	flexural	asymmetric, varying depth and subsidence
10. Piggyback basins (thrust-fold belts)	continental	convergence	asymmetric, varying depth and subsidence
Subduction:			

V. Collision and post-collision bas	sins		
11. Remnant basins (paleo-trenches)	oceanic	convergence	moderate to low subsidence driven by sediment loading
12. Intramontane basins (thrust-fold belts)	continental	divergence	the equivalent of grabens in thrust-fold belts
13. Foreland systems (pro/retro)	continental	flexural	asymmetric, varying depth and subsidence

VI. Transform- and transcurrent-fault (strike-slip) basins

14. Pull-apart basins continental/oceanic transtension relatively small, elongate, rapid subsidence

